Categories
Featured

Predicción: 2025 es el año en que la computación cuántica avanza de qubits físicos a qubits lógicos

[ad_1]

La computación cuántica ha sido durante mucho tiempo un tema de fascinación y entusiasmo, y promete resolver problemas complejos que exceden con creces las capacidades de las computadoras clásicas. A medida que nos adentramos en 2025, esta tecnología transformadora está preparada para dar un gran salto adelante, avanzando de qubits físicos a qubits lógicos. Este cambio representa un momento crucial en el viaje de la industria cuántica, que allana el camino para desarrollos interesantes en diversas industrias y aborda desafíos técnicos que, hasta ahora, han limitado el potencial de las computadoras cuánticas.

Anticipando el salto de los qubits físicos a los lógicos

De forma similar a los clásicos. Computadoras Los bits se utilizan para almacenar información, ya que las computadoras cuánticas se basan en el uso de qubits físicos para almacenar información cuántica. Desafortunadamente, los qubits físicos son sensibles al ruido ambiental, lo que los hace propensos a errores y no son adecuados para resolver grandes problemas computacionales. Esta limitación se puede superar mediante la corrección de errores cuánticos, que codifica información en múltiples qubits físicos para crear unidades más confiables y resistentes a errores llamadas qubits lógicos. Esta transformación permitirá que las computadoras cuánticas aborden problemas del mundo real, trasladando la tecnología de aplicaciones experimentales a aplicaciones prácticas a gran escala.

[ad_2]

Source Article Link

Categories
News

La computadora cuántica Sycamore de 67 qubits de Google puede superar a las mejores supercomputadoras: estudio

[ad_1]

Los recientes avances en computación cuántica han revelado que el procesador Sycamore de 67 qubits de Google puede superar al procesador clásico más rápido. Supercomputadoras. Este avance, detallado en un estudio publicado en Nature el 9 de octubre de 2024, señala una nueva fase en la computación cuántica conocida como “fase de ruido débil”.

Comprender la fase de ruido débil

La investigación, dirigida por Alexis Morvan de Google Quantum AI, muestra cómo los procesadores cuánticos podrían entrar en esta fase estable y computacionalmente compleja. Durante esta etapa, el chip Sycamore es capaz de realizar cálculos que superan las capacidades de rendimiento de las supercomputadoras tradicionales. Según los representantes de Google, este descubrimiento representa un paso importante hacia aplicaciones de la tecnología cuántica en el mundo real que no pueden ser replicadas por las computadoras clásicas.

El papel de los qubits en la computación cuántica

Computadoras cuánticas Aprovechar los qubits, que aprovechan los principios de la mecánica cuántica para realizar cálculos en paralelo. Esto contrasta marcadamente con la informática clásica, donde los bits procesan la información de forma secuencial. El poder exponencial de los qubits permite a las máquinas cuánticas resolver problemas en segundos, lo que a las computadoras clásicas les llevaría miles de años. Sin embargo, los qubits son muy sensibles a las interferencias, lo que da lugar a una alta tasa de fallos; Por ejemplo, aproximadamente 1 de cada 100 qubits podría fallar, en comparación con la increíblemente baja tasa de falla de 1 entre mil millones de qubits de los sistemas clásicos.

Superar retos: corregir ruidos y errores

A pesar del potencial, la computación cuántica enfrenta desafíos importantes, principalmente el ruido que afecta el rendimiento de los qubits. Para lograr la “supremacía cuántica”, son esenciales métodos eficaces de corrección de errores, especialmente a medida que aumenta el número de qubits, según LiveScience. un informe. Actualmente, las máquinas cuánticas más grandes contienen alrededor de 1.000 qubits, y escalarlas presenta complejos obstáculos técnicos.

Experimento: muestreo de circuito aleatorio

Y en el último experimento, Google Investigadores Utilizó una técnica llamada muestreo de circuitos aleatorios (RCS) para evaluar el rendimiento de una red bidimensional de qubits superconductores. RCS sirve como punto de referencia para comparar las capacidades de las computadoras cuánticas con las supercomputadoras clásicas y se considera uno de los puntos de referencia más desafiantes en computación cuántica.

Los resultados indicaron que manipulando los niveles de ruido y controlando las correlaciones cuánticas, los investigadores pueden mover los qubits a la “fase de ruido débil”. En este caso, los cálculos se han vuelto suficientemente complejos, lo que demuestra que el chip Sycamore puede superar a los sistemas clásicos.

[ad_2]

Source Article Link

Categories
Featured

Microsoft makes major quantum computing breakthrough — development of most stable qubits might actually make the technology viable for many, but will anyone be able to afford it?

[ad_1]

Unlike traditional computing that uses binary bits, quantum computing uses quantum bits or ‘qubits’, enabling simultaneous processing of vast amounts of data, potentially solving complex problems much faster than conventional computers.

In a major step forward for quantum computing, Microsoft and Quantinuum have unveiled the most reliable logical qubits to date, boasting an error rate 800 times lower than physical qubits. 

[ad_2]

Source Article Link

Categories
News

IBM System Two Quantum Computer unveiled crosses 1000 Qubits threshold

IBM System Two Quantum Computer

In the rapidly evolving world of quantum computing, IBM is making significant strides. Recently announcing that its latest quantum processor, the IBM Condor, which boasts 1,121 qubits, a significant increase from the previous 433-qubit chip. This development aligns with IBM’s projected quantum roadmap. Qubits, the fundamental units of quantum computers, enable significantly faster calculations than traditional computers when entangled. However, the sheer number of qubits is not the sole indicator of a quantum computer’s performance.

This cutting-edge field, once confined to theoretical research, is now seeing practical applications that could transform how we tackle complex problems. The IBM Quantum System Two, a new system that houses the Condor, is a marvel of engineering. Enclosed in a 15-foot structure, it operates in conditions that mimic the extreme cold of outer space. Initially, it will run on three 133-qubit Heron processors, but its design is future-proof, ready to integrate subsequent technological leaps.

IBM Quantum System Two computer

One of the most impressive features of the Quantum System Two is its modular architecture. This design is key to its ability to perform an astounding 100 million operations within a single quantum circuit. IBM isn’t stopping there; they have set their sights on scaling up to 1 billion operations by the year 2033.

To support the people who will develop the future of quantum computing, IBM has released Qiskit 1.0, a software development kit (SDK) that enhances the tools available to developers. This SDK makes it easier to compile quantum circuits with the help of artificial intelligence and introduces a batch mode that streamlines job execution. These improvements are designed to make the quantum computing workflow more user-friendly.

IBM is also focused on building a robust quantum computing ecosystem. They are doing this by developing resources like Qiskit Patterns and Quantum Serverless, which aid in the creation of algorithms and applications. Additionally, IBM is pioneering the integration of generative AI into quantum code programming through Watsonx, showcasing the synergy between artificial intelligence and quantum computing.

IBM Condor Qubit processor

At the forefront of this advancement is IBM’s latest creation, the IBM Condor, a powerful 1,121-qubit processor that is setting new benchmarks in computational capabilities. The IBM Condor’s large number of qubits is a clear indication of the progress IBM has made on their quantum computing roadmap. The power of a quantum computer comes from the entanglement of qubits, which allows for an exponential increase in computational capabilities. This means that quantum computers can address problems that are currently beyond the reach of classical computers.

Creating a quantum processor like the IBM Condor involves complex superconducting circuits that are etched onto silicon wafers. This is a crucial step in the advancement of quantum computing technology. However, it’s not just about having a large number of qubits. It’s also essential to achieve low error rates and maintain high fidelity in the operations of these qubits for them to be practically applied.

Although the qubit count of the IBM Condor is noteworthy, IBM has not yet shared detailed performance data for this new processor. The company has previously emphasized the importance of ‘quantum volume’ as a metric, which takes into account not only the number of qubits but also their quality, connectivity, and the error rates of operations. This metric has not been updated since 2020, leaving us waiting for more information on the processor’s capabilities.

1000 Qubits threshold crossed what does that mean?

The potential uses for the IBM Condor are still being explored. Experts in the field suggest that quantum computing will require millions of qubits to become commercially viable. This means that, despite the advancements the IBM Condor represents, there is still a long way to go before quantum computing can transform various industries. Here are some other articles you may find of interest on the subject of Quantum computing :

As we consider IBM’s latest development, it’s crucial to remember that the promise of quantum computing is not solely based on the number of qubits. It also includes the complexity of their interconnections and the accuracy with which they can be manipulated. The IBM Condor is a sign of the progress being made in quantum computing and signals the approach of a new era in this exciting field.

Quantum computing is an area of technology that has the potential to transform how we solve complex problems. Unlike traditional computers that use bits to process information, quantum computers use qubits, which can exist in multiple states simultaneously. This allows them to perform many calculations at once, providing a level of processing power that’s unattainable with current classical computers.

IBM’s unveiling of the IBM Condor quantum processor with 1,121 qubits is a testament to the rapid advancements in quantum technology. The IBM Condor represents a significant leap from IBM’s previous quantum processors and is a key milestone on their roadmap for the development of quantum computing.

The power of quantum computing lies in the ability of qubits to be entangled, which allows for an exponential increase in computational capabilities. This entanglement enables quantum computers to tackle problems that are currently unsolvable by traditional computers. The IBM Condor’s large number of qubits is a clear indication of the progress IBM has made in this area.

However, the number of qubits is not the only challenge in quantum computing. Achieving low error rates and maintaining high fidelity in qubit operations are also critical for the practical application of quantum processors. While the qubit count of the IBM Condor is impressive, IBM has yet to release detailed performance data for the processor. The company has previously highlighted ‘quantum volume’ as an important metric, which considers the number of qubits, their quality, connectivity, and the error rates of operations. This metric has not been updated since 2020, leaving us waiting for more information on the processor’s capabilities.

Looking ahead, IBM has laid out a comprehensive roadmap that extends to 2033. This plan includes a series of enhancements to their quantum computing systems, which will eventually feature processors with over 100 qubits. IBM is also forging partnerships with research institutions to explore quantum-powered applications.

IBM’s dedication to quantum computing is not just about technological prowess; it’s about providing enterprise solutions that are tailored to specific industries. As IBM’s quantum computing technology matures, it opens up possibilities for addressing some of the most challenging issues facing the world today. The advancements IBM is making today are paving the way for a future where quantum computing plays a pivotal role in solving complex problems and unlocking new opportunities.

Filed Under: Technology News, Top News





Latest timeswonderful Deals

Disclosure: Some of our articles include affiliate links. If you buy something through one of these links, timeswonderful may earn an affiliate commission. Learn about our Disclosure Policy.