Categories
News

La tecnología BioPrint Cell BioPrint de L'Oréal con análisis de piel personalizado no invasivo presentada en CES 2025

[ad_1]

loreal L'Oréal Cell BioPrint presentó el lunes un nuevo dispositivo llamado L'Oréal Cell BioPrint, que está diseñado para utilizar un enfoque no invasivo para proporcionar análisis de piel personalizados en unos pocos minutos. La compañía afirma que Cell BioPrint puede indicar a los usuarios la edad biológica de su piel, predecir cómo funcionarán ciertos ingredientes activos en su piel e incluso “predecir” problemas cosméticos como las manchas oscuras antes de que aparezcan. El dispositivo estará disponible en Asia a finales de este año, según la empresa.

L'Oréal Cell BioPrint realiza análisis de la piel identificando biomarcadores proteicos

Compañía el dice L'Oréal Cell BioPrint se desarrolló utilizando tecnología de laboratorio de microfluidos patentada de la empresa coreana NanoEnTek, que está diseñada para analizar la piel del usuario midiendo biomarcadores de proteínas únicos durante un período de cinco minutos.

El proceso no quirúrgico de analizar la piel del usuario comienza con la aplicación de una tira de cinta facial, que luego se agrega a una solución tampón. Esto se agrega al cartucho que se coloca en L'Oréal Cell BioPrint para su análisis. Durante el proceso de cinco minutos, un dispositivo con pantalla táctil pedirá a los usuarios que respondan algunas preguntas, mientras toman fotografías de sus rostros.

L'Oréal Bioprint Lorea Cell Embedded L'Oréal

L'Oréal dice que ha reducido su tecnología Cell BioPrint al tamaño de una tarjeta de crédito
Fuente de la imagen: L'Oreal

L'Oréal afirma que el dispositivo Cell BioPrint puede calcular la rapidez con la que envejece la piel de un usuario, proporcionando consejos adaptados a su tipo de piel. También puede predecir cómo responderá un producto en particular a ingredientes, como el retinol o la vitamina A, que se utilizan para tratar el acné y retardar los efectos del envejecimiento.

La compañía también dice que el dispositivo de mesa también puede “predecir posibles problemas cosméticos” que no están presentes en la piel de una persona en ese momento, como poros dilatados o hiperpigmentación. L'Oréal no especificó si la función también proporcionará consejos para el cuidado de la piel para los problemas detectados al utilizar esta función.

Vale la pena señalar que estos dispositivos no reemplazan a un dermatólogo calificado y L'Oréal aún no ha proporcionado ningún detalle de estudios científicos que puedan proporcionar evidencia concluyente (en forma de estudios científicos) que demuestren que todas las funciones del dispositivo funcionan. seguramente. Es posible que los usuarios tengan que esperar un poco para que el dispositivo esté disponible comercialmente, y la compañía dice que probará el dispositivo en Asia con una de sus marcas a finales de este año.

Recibe las últimas novedades de CES en Gadgets 360, nuestro sitio web Salón de electrónica de consumo 2025 centro.

[ad_2]

Source Article Link

Categories
News

Human Cell Atlas mapea 37 billones de células humanas para identificar enfermedades

[ad_1]

Esfuerzos para crear un mapa todo incluido Células humanas Dio un gran salto adelante. Investigadores asociados con Human Cell Atlas (HCA), un consorcio científico global, han publicado más de 40 estudios que detallan avances cruciales en el mapeo de los 37 billones de células que componen el cuerpo humano. Estos hallazgos, publicados el 20 de noviembre en la revista Nature, se centran en células que se encuentran en órganos como los pulmones, la piel y el cerebro, e identifican herramientas computacionales avanzadas para analizar grandes conjuntos de datos.

El proyecto tiene como objetivo perfilar células de diversas poblaciones de todo el mundo para determinar sus funciones, ubicaciones e interacciones únicas en diferentes etapas de la vida. Ya se han recopilado datos de 100 millones de células procedentes de más de 10.000 personas en más de 100 países. Para 2026, los investigadores planean presentar el primer borrador del atlas y se espera que las versiones futuras incluyan miles de millones de células.

Hallazgos detallados en todo el cuerpo.

entre los ultimos Resultados Es un mapa celular completo del sistema digestivo, desde el esófago hasta el colon. Este trabajo, basado en datos de 190 personas, reveló un tipo de célula responsable de enfermedades inflamatorias como la enfermedad de Crohn y la colitis ulcerosa. El profesor Itai Yanai de NYU Langone Health señaló que estas células probablemente desencadenen respuestas inmunes, lo que contribuye a la inflamación en el tejido enfermo.

Otros estudios han arrojado luz sobre el desarrollo humano temprano, incluidos conocimientos sobre la formación del esqueleto durante el embarazo y afecciones como la craneosinostosis. Los mapas que comparan el desarrollo del cerebro fetal con los organoides cerebrales cultivados en el laboratorio también resaltan la precisión de estos modelos, que replican la actividad del cerebro humano hasta el segundo trimestre del embarazo.

Implicaciones para la investigación médica

Los hallazgos tienen implicaciones para el descubrimiento de fármacos y la comprensión de las enfermedades. El Dr. Aviv Regev, copresidente de la HCA, comparó el trabajo con los avances en las tecnologías cartográficas y dijo: “Hemos pasado de mapas básicos y toscos a algo tan detallado como Google Maps”. Sin embargo, reconoció el importante trabajo que queda por delante para completar este ambicioso proyecto.

el investigación Ya ha dado lugar a descubrimientos innovadores, incluida la identificación de un nuevo tipo de célula pulmonar y conocimientos sobre qué tejidos están en riesgo. COVID-19. Los científicos pretenden seguir mejorando estos mapas, utilizando organoides y otros métodos para descubrir la biología humana y los mecanismos de las enfermedades.

[ad_2]

Source Article Link

Categories
Featured

Scientists design super-battery made with cheap, readily affordable chemical element, Na — Salt-based cell has surprisingly good energy density and charges in seconds

[ad_1]

Researchers at the Korea Advanced Institute of Science and Technology (KAIST) have developed a high-performance, hybrid sodium-ion battery that charges rapidly and offers impressive energy density. 

This revolutionary prototype uses sodium (Na), a chemical element over 1000 times more abundant and cheaper than lithium (Li), the main component of conventional batteries.

[ad_2]

Source Article Link

Categories
Featured

Visible Plus is one of the best cheap cell phone plans – and it just got even better

[ad_1]

Visible Wireless Plus plan was already one of the best cheap cell phone plans money could buy, but it’s even better value now thanks to a host of excellent new features.

The Visible Plus plan still costs $45/mo, but it now includes more generous mobile hotspot speeds, a free additional line for a smartwatch, and one free global pass per month. All the main selling points from before are still here, too – namely, the 50GB of premium data allowance on parent company Verizon’s 5G Ultraband network.

[ad_2]

Source Article Link

Categories
Life Style

Scientists discover first algae that can fix nitrogen — thanks to a tiny cell structure

[ad_1]

1000x magnification micrograph of Braarudospharea bigelowii cell.

A Braarudosphaera bigelowii cell magnified 1,000-fold.Credit: Tyler Coale

Researchers have discovered a type of organelle, a fundamental cellular structure, that can turn nitrogen gas into a form that is useful for cell growth.

The discovery of the structure, called a nitroplast, in algae could bolster efforts to genetically engineer plants to convert, or ‘fix’, their own nitrogen, which could boost crop yields and reduce the need for fertilizers. The work was published in Science on 11 April1.

“The textbooks say nitrogen fixation only occurs in bacteria and archaea,” says ocean ecologist Jonathan Zehr at the University of California, Santa Cruz, a co-author of the study. This species of algae is the “first nitrogen-fixing eukaryote”, he adds, referring to the group of organisms that includes plants and animals.

In 2012, Zehr and his colleagues reported that the marine algae Braarudosphaera bigelowii interacted closely with a bacterium called UCYN-A that seemed to live in, or on, the algal cells2. The researchers hypothesised that UCYN-A converts nitrogen gas into compounds that the algae use to grow, such as ammonia. In return, the bacteria were thought to gain a carbon-based energy source from the algae.

But in the latest study, Zehr and his colleagues conclude that UCYN-A should be classed as organelles inside the algae, rather than as a separate organism. According to genetic analysis from a previous study, ancestors of the algae and bacteria entered a symbiotic relationship around 100 million years ago, says Zehr. Eventually, this gave rise to the nitroplast organelle, now seen in B. bigelowii.

Defining organelles

Researchers use two key criteria to decide whether a bacterial cell has become an organelle in a host cell. First, the cell structure in question must be passed down through generations of the host cell. Second, the structure must be reliant on proteins provided by the host cell.

By imaging dozens of algae cells at various stages of cell division, the team found that the nitroplast splits in two just before the whole algae cell divides. In this way, one nitroplast is passed down from the parent cell to its offspring, as happens with other cell structures.

Next, the researchers found that the nitroplast gets the proteins it needs to grow from the wider algae cell. The nitroplast itself — which makes up more than 8% of the volume of each host cell — lacks key proteins required for photosynthesis and making genetic material, says Zehr. “A lot of these proteins [from the algae] are just filling those gaps in metabolism,” he says.

The discovery was made possible thanks to work by study author Kyoko Hagino at Kochi University in Japan, who spent around a decade fine-tuning a way to grow the algae in the lab — which allowed it to be studied in more detail, says Zehr.

“It’s quite remarkable,” says Siv Andersson, who studies how organelles evolve at Uppsala University in Sweden. “They really see all these hallmarks that we think are characteristic of organelles.”

Upgraded plants

Understanding how the nitroplast interacts with its host cell could support efforts to engineer crops that can fix their own nitrogen, says Zehr. This would reduce the need for nitrogen-based fertilizers and avoid some of the environmental damage they cause. “The tricks that are involved in making this system work could be used in engineering land plants,” he says.

“Crop yields are majorly limited by availability of nitrogen,” says Eva Nowack, who studies symbiotic bacteria at the Heinrich Heine University Düsseldorf in Germany. “Having a nitrogen-fixing organelle in a crop plant would be, of course, fantastic.” But introducing this ability into plants will be no easy feat, she warns. Plant cells containing the genetic code for the nitroplast would need to be engineered in such a way that the genes were transferred stably from generation to generation, for example. “That would be the most difficult thing to do,” she says.

“It’s both a pleasure and very impressive to see this work build up to what is certainly a major stepping stone in understanding,” says Jeffrey Elhai, a cell biologist at Virginia Commonwealth University in Richmond, Vriginia.

[ad_2]

Source Article Link

Categories
Life Style

give them stem cell skills

[ad_1]

Bioengineered immune cells have been shown to attack and even cure cancer, but they tend to get exhausted if the fight goes on for a long time. Now, two separate research teams have found a way to rejuvenate these cells: make them more like stem cells.

Both teams found that the bespoke immune cells called CAR T cells gain new vigour if engineered to have high levels of a particular protein. These boosted CAR T cells have gene activity similar to that of stem cells and a renewed ability to fend off cancer. Both papers were published today in Nature1,2.

The papers “open a new avenue for engineering therapeutic T cells for cancer patients”, says Tuoqi Wu, an immunologist at the University of Texas Southwestern in Dallas who was not involved in the research.

Reviving exhausted cells

CAR T cells are made from the immune cells called T cells, which are isolated from the blood of person who is going to receive treatment for cancer or another disease. The cells are genetically modified to recognize and attack specific proteins — called chimeric antigen receptors (CARs) — on the surface of disease-causing cells and reinfused into the person being treated.

But keeping the cells active for long enough to eliminate cancer has proved challenging, especially in solid tumours such as those of the breast and lung. (CAR T cells have been more effective in treating leukaemia and other blood cancers.) So scientists are searching for better ways to help CAR T cells to multiply more quickly and last longer in the body.

With this goal in mind, a team led by immunologist Crystal Mackall at Stanford University in California and cell and gene therapy researcher Evan Weber at the University of Pennsylvania in Philadelphia compared samples of CAR T cells used to treat people with leukaemia1. In some of the recipients, the cancer had responded well to treatment; in others, it had not.

The researchers analysed the role of cellular proteins that regulate gene activity and serve as master switches in the T cells. They found a set of 41 genes that were more active in the CAR T cells associated with a good response to treatment than in cells associated with a poor response. All 41 genes seemed to be regulated by a master-switch protein called FOXO1.

The researchers then altered CAR T cells to make them produce more FOXO1 than usual. Gene activity in these cells began to look like that of T memory stem cells, which recognize cancer and respond to it quickly.

The researchers then injected the engineered cells into mice with various types of cancer. Extra FOXO1 made the CAR T cells better at reducing both solid tumours and blood cancers. The stem-cell-like cells shrank a mouse’s tumour more completely and lasted longer in the body than did standard CAR T cells.

Master-switch molecule

A separate team led by immunologists Phillip Darcy, Junyun Lai and Paul Beavis at Peter MacCallum Cancer Centre in Melbourne, Australia, reached the same conclusion with different methods2. Their team was examining the effect of IL-15, an immune-signalling molecule that is administered alongside CAR T cells in some clinical trials. IL-15 helps to switch T cells to a stem-like state, but the cells can get stuck there instead of maturing to fight cancer.

The team analysed gene activity in CAR T cells and found that IL-15 turned on genes associated with FOXO1. The researchers engineered CAR T cells to produce extra-high levels of FOXO1 and showed that they became more stem-like, but also reached maturity and fight cancer without becoming exhausted. “It’s the ideal situation,” Darcy says.

The team also found that extra-high levels of FOXO1 improved the CAR T cells’ metabolism, allowing them to last much longer when infused into mice. “We were surprised by the magnitude of the effect,” says Beavis.

Mackall says she was excited to see that FOXO1 worked the same way in mice and humans. “It means this is pretty fundamental,” she says.

Engineering CAR T cells that overexpress FOXO1 might be fairly simple to test in people with cancer, although Mackall says researchers will need to determine which people and types of cancer are most likely to respond well to rejuvenated cells. Darcy says that his team is already speaking with clinical researchers about testing FOXO1 in CAR T cells — trials that could start within two years.

And Weber points to an ongoing clinical trial in which people with leukaemia are receiving CAR T cells genetically engineered to produce unusually high levels of another master-switch protein called c-Jun, which also helps T cells avoid exhaustion. The trial’s results have not been released yet, but Mackall says she suspects the same system could be applied to FOXO1 and that overexpressing both proteins might make the cells even more powerful.

[ad_2]

Source Article Link