Categories
Featured

Researchers produce thinnest sheet of metal ever using a 100-year old Japanese technique — Goldene could pave way for super catalysts, ultra high density optical storage and much more

[ad_1]

Described by Nature as the “gilded cousin of Graphene”, Goldene is a one-atom-thick sheet of gold created by scientists from Linköping University (LiU) in Sweden. 

It has unique properties that the researchers believe could pave the way for applications such as carbon dioxide conversion, hydrogen production, water purification, and communication.

[ad_2]

Source Article Link

Categories
Life Style

Optical clocks at sea | Nature

[ad_1]

Atomic timekeeping plays an essential role in modern infrastructure, from transportation to telecommunications to cloud computing. Billions of devices rely on the Global Navigation Satellite System for accurate positioning and synchronization11. The Global Navigation Satellite System is a network of distributed, high-performance microwave-based atomic clocks that provide nanosecond-level synchronization globally. The emergence of fieldable optical timekeeping, which offers femtosecond timing jitter at short timescales and multiday, subnanosecond holdover, along with long-distance femtosecond-level optical time transfer12, paves the way for global synchronization at picosecond levels.

Molecular iodine (I2) has a legacy as an optical frequency standard13,14,15,16,17. Several iodine transitions are officially recognized as length standards18, and the species underpinned one of the first demonstrations of optical clocks19,20. More recently, iodine frequency standards have been investigated for space missions21,22,23,24. Here we report the deployment of several high-performance, fully integrated iodine optical clocks and highlight their ability to maintain nanosecond (ns)-level timing for several days while continuously operating at sea.

These clocks use a robust vapour cell architecture that uses no consumables, does not require laser cooling or a prestabilization cavity and is first-order insensitive to platform motion. Similar approaches with rubidium vapour cells are under development25,26,27. Importantly, iodine clocks use mature laser components at 1,064 nm and 1,550 nm. The focus on a robust laser system rather than a high-performance atomic species resolves system-level issues with dynamics, lifetime, autonomy and cost. Although not as accurate as laboratory optical clocks using trapped atoms or ions, iodine clocks can provide maser-level performance in a compact, robust and mobile package.

Initial clock prototypes were integrated into 35 l, 3 U 19-inch rackmount chassis, shown in Fig. 1a. Clock outputs are at 100 MHz, 10 MHz and 1 pulse per second. Auxiliary optical outputs are provided for the frequency comb and clock laser (1,550 nm and 1,064 nm, respectively). The physics packages, which include the spectrometer, laser system and frequency comb, were designed and built in-house to reduce system-level size, weight and power (SWaP). Field-programmable gate array-based controllers perform digital locks for the laser and frequency comb, servo residual amplitude modulation (RAM) and stabilize the pump and probe powers. The clock operates using a commercial 1 U rackmount power supply and control laptop. Each system consumes about 85 W (excluding the external power supply) and weighs 26 kg.

Fig. 1: Single-clock performance at NIST and at sea.
figure 1

a, The 3 U, 19-inch rackmount iodine optical clock occupies a volume of 35 l and consumes less than 100 W. b, Measured phase noise for the iodine clock at 10 MHz, 100 MHz and 1,064 nm. c, Overlapping Allan deviation for the iodine clock operating at NIST and at sea. At short timescales, the instability in a dynamic environment is identical to the laboratory. The iodine clock can maintain less than 10−14 frequency instability for several days despite several-degree temperature swings, significant changes in relative humidity and changing magnetic fields. d, The clocks can maintain holdovers of 10 ps for several hours and 1 ns for several days, showing their potential as the basis for a picosecond-level timing network.

Two clocks with identical hardware (PICKLES and EPIC) were developed with physics packages targeting short-term instability below 10−13/√τ, comparable to commercial masers. A third clock (VIPER) with a relaxed performance goal of less than 5 × 10−13/√τ was built using a smaller iodine spectrometer and simplified laser system to reduce the physics package volume by 50% and power consumption by 5 W; the chassis volume was unchanged. The frequency comb design and control electronics for PICKLES, EPIC and VIPER are largely identical.

In April 2022, PICKLES and EPIC were shipped to the National Institute of Standards and Technology (NIST) in Boulder, Colorado for assessment against the Coordinated Universal Timescale maintained at NIST, that is, UTC(NIST)28. The clocks operated on an optical table without any further measures to insulate them from the NIST laboratory environment, which is temperature stabilized. The laboratory was also in active use throughout the measurement campaign. The 10 MHz tone from each clock was compared against a 5 MHz maser signal with a Microchip 53100A phase noise analyser in a three-cornered hat (TCH) configuration. NIST maser ST05 (Symmetricom MHM-2010) was selected as the lowest drift maser in the ensemble (3 × 10−17 per day). The measurement scheme allows for decorrelating the three clocks at short timescales and measuring against the NIST composite timescale AT1, derived from the maser ensemble, at longer timescales. Importantly, ST05 was operated in an environmental chamber in a separate laboratory, providing an environmentally uncorrelated reference. The 1,064 nm optical beatnote between PICKLES and EPIC was simultaneously monitored for cross-validation. After installation, the clocks were left to operate autonomously. The measurement setup was remotely monitored without intervention from our California headquarters, and the comparison was intentionally terminated after 34 days on return to NIST.

The overlapping Allan deviation for the entire 34-day dataset without any windowing, dedrifting or filtering is shown in Fig. 2. To present the individual clock performance, the Allan deviation plot uses the 1–1,000 s instability extracted from TCH analysis and the direct instability against ST05 for time periods longer than 1,000 s (Extended Data Fig. 3). The PICKLES and EPIC short-term instabilities of 5 × 10−14/\(\sqrt{\tau }\) and 6 × 10−14/\(\sqrt{\tau }\), respectively, outperform the short-term performance of the ST05 maser. Both iodine clocks exhibit fractional frequency instabilities less than 5 × 10−15 after 100,000 s of averaging, equivalent to a temporal holdover below 300 ps after 1 day.

Fig. 2: Long-term clock performance.
figure 2

Overlapping Allan deviation for the 10 MHz outputs of the two iodine clocks measured against the UTC(NIST) timebase for 34 days (blue and orange traces). The clocks exhibit a raw frequency instability of 4 × 10−15 (PICKLES) and 6 × 10−15 (EPIC) after 105 s of averaging and maintain instability less than 10−14 for nearly 6 days (PICKLES). With linear drift removal, the frequency instability improves to less than 2 × 10−15 (PICKLES) and less than 3 × 10−15 (EPIC) for 106 s (open circles). The performance of a variety of NIST masers against the composite AT1 timescale is shown for comparison (grey traces) as well as a commercial caesium clock (green trace). The long-term frequency record for the two iodine clocks against ST05 is shown as an inset. Each trace is shown as a 1,000 s moving average. The linear drift for each clock is observed to be several 10−15 per day. MJD is the modified Julian day.

The data also provided an initial measure of the long-term stability of the iodine clocks (Fig. 2, inset). Measured against UTC(NIST), the drift rates for PICKLES and EPIC are 2 × 10−15 and 4 × 10−15 per day, respectively, consistent with the long-term accuracy of an iodine vapour cell measured over the course of a year19. This drift rate is about ten times lower than a typical space-qualified rubidium atomic frequency standard after more than a year of continuous operation29,30. Moreover, the iodine-stabilized laser provides a drift rate roughly 10,000–100,000× lower as compared to typical ultralow expansion (ULE) optical cavities31,32. This drift rate has been consistent for multiple measurement campaigns over several months (Extended Data Fig. 5). Removal of linear drift from the frequency data indicates that the two clocks continue to hold less than 3 × 10−15 instability after more than 106 s (approximately 12 days) of averaging, equivalent to 1 ns timing error over this period. Without drift removal, the long-term clock performance is competitive with the NIST active hydrogen masers; drift removal puts the clock instability on par with the highest-performing masers in the NIST bank. Notably, to achieve the drift rates observed in Fig. 2, the NIST masers are operated continuously for years and housed in environmental chambers with a volume of nearly 1,000 l to stabilize temperature and humidity to better than 100 mK and 1%, respectively (ref. 33 and J. Sherman, private communication). The laboratory housing PICKLES and EPIC was stable to hundreds of millikelvins throughout the measurement campaign, which started a few days after a cross-country shipment. Finally, the raw iodine clock performance is below NIST’s commercial caesium beam clock (Microchip 5071A) for 5.5 days; the dedrifted iodine performance is below caesium for all observed timescales.

A broad feature with a peak deviation of 4 × 10−15 is evident in the PICKLES Allan deviation at roughly 20,000 s (about 7 h) timescales. The equivalent optical frequency deviation of 2 Hz corresponds to a shift of about 2 ppm of the hyperfine transition line centre. We suspect that the origin of this plateau in PICKLES is RAM coupling through a spurious etalon in the spectrometer. By modifying the build procedure, this etalon was mitigated during the build of the EPIC spectrometer.

The iodine clock exhibits excellent phase noise for the 10 and 100 MHz tones derived by optical frequency division as well as the 1,064 nm optical output (Fig. 1b). The phase noise at microwave frequencies is lower than commercial atomic-disciplined oscillators, highlighting the benefits of optical frequency division where the fractional noise of the iodine-stabilized laser is transferred to the frequency comb repetition rate.

Following the measurement against an absolute reference at NIST-Boulder, three optical clocks were brought to Pearl Harbor, HI in July 2022 to participate in the Alternative Position, Navigation and Time (A-PNT) Challenge at Rim of the Pacific (RIMPAC) 2022, the world’s largest international maritime exercise. A-PNT was an international demonstration of quantum technologies with academic, government and industry participants. Several prototype quantum technologies including optical clocks34,35 and atomic inertial sensors were fielded36. The iodine clocks were installed in an open server rack along with a commercial 1 U power supply for each clock, three control laptops and an uninterruptable power supply backup for the system (Fig. 3a). The rack also contained three frequency counters to collect the three pairwise beatnotes and a 53100A phase noise analyser to compare the 100 MHz tone derived from each clock’s frequency comb against the other two in a TCH configuration. The total stackup, including three independent clocks, power supplies, computer controls and metrology systems, occupied a rack height of 23 U. The server rack was hard-mounted to the floor of a Conex cargo container, which was craned onto the deck of the New Zealand naval ship HMNZS Aotearoa (Fig. 3b), where it remained during the three weeks the vessel was at sea. Once the ship left port, the three clocks operated without user intervention for the duration of the exercise, apart from one restart of VIPER due to a software fault in the external power supply.

Fig. 3: At-sea demonstration of optical clocks.
figure 3

a, Clock stackup for RIMPAC 2022. The server rack contained three independent optical clocks, a 1 U power supply and control laptop for each clock, an uninterruptable power supply and the measurement system in a total rack volume of 23 U. b, The cargo container housing the clocks was craned onto the deck of the HMNZS Aotearoa, where it remained for the three-week naval exercise. c, A GPS track of the Aotearoa’s voyage around the Hawaiian Islands. The ship started and ended its voyage at Pearl Harbor, O’ahu. d, Overlapping Allan deviation during the underway. For time periods less than 100 s, individual clock contributions are extracted with a TCH analysis; directly measured pairwise instabilities are shown for periods longer than 100 s. The EPIC–PICKLES pair maintains a fractional frequency instability of 8 × 10−15 after 105 s of averaging, corresponding to a temporal holdover of 400 ps. e, PSD for the PICKLES–EPIC frequency fluctuations at NIST and at sea with the recorded ship pitch and heave (rotation and acceleration on the other ship axes showed similar behaviour). The PICKLES–VIPER PSD (not shown) showed a similar immunity to the ship motion. Photograph of the ship by T. Bacon, DVIDS.

The operating environment during the ship’s underway differed significantly from NIST, but the clocks still operated continuously with high performance (Fig. 1c,d). Although the Conex was air-conditioned, the internal environment underwent swings of roughly 2–3 °C peak-to-peak temperature and 4%–5% relative humidity over a day–night cycle. The clock rack was located directly in front of the air conditioning unit, which cycled on and off throughout the day. The clocks also operated continuously through ship motion. The rotational dynamics of the ship included a peak pitch of ±1.5° at a rate of ±1.2° s−1 and a peak roll of ±6° at a rate of ±3° s−1. Similarly, the maximum surge, sway and heave accelerations were ±0.4, ±1.5 and ±1.2 m s2, respectively. A vertical root mean square vibration of 0.03 m s2 (integrated from 1 to 100 Hz) was also experienced. Operation in dynamic environments highlights the robust, high-bandwidth clock readout (greater than 10 kHz control bandwidth) enabled by a vapour cell.

The vessel travelled in all four cardinal directions during the exercise, illustrated by the GPS-tracked trajectory in Fig. 3c. The National Oceanic and Atmospheric Administration geomagnetic model for Earth’s magnetic field at this latitude and longitude shows that the projection of the Earth’s field on the clocks varied by ±270 mG throughout the underway (https://www.ngdc.noaa.gov/geomag/geomag.shtml).

The overlapping Allan deviations measured during the voyage are shown in Fig. 3d. For time periods less than 100 s, the individual clock contributions are extracted with a TCH analysis. Directly measured pairwise instabilities are shown for longer time periods. There was no degradation in the clock signal-to-noise ratio (SNR) despite ship vibration and motion; the short-term performance for the three clocks was identical to that observed at NIST for up to 1,000 s (Fig. 1c,d). All three clocks showed immunity to dominant ship motion in the band at about 0.1 Hz (Fig. 3e). A medium timescale instability was driven by the day–night temperature swing in the Conex. Nonetheless, the PICKLES–EPIC clock pair maintains 8 × 10−15 combined instability at 100,000 s without drift correction, equivalent to temporal holdover of roughly 400 ps over 24 h. The PICKLES–EPIC data exhibit a temperature-driven instability in the 103–105 s range due to insufficient air conditioner capacity during the day. This plateau at 104 s originates from EPIC on the basis of environmental chamber testing following RIMPAC, but its performance is still within two times that seen at NIST. Finally, the drift rate for PICKLES–EPIC over this period was similar to that observed at NIST (Extended Data Fig. 5). This long-term performance illustrates the robustness of iodine-based timekeeping as the clocks experienced diurnal temperature swings of several degrees, platform motion arising from ship dynamics and constant movement through Earth’s magnetic field.

VIPER exhibits a short-term instability of 1.3 × 10−13/\(\sqrt{\tau }\) as well as a more prominent diurnal temperature instability that peaks at 4 × 10−14 near 40,000 s (corresponding to roughly 1 day periodic instability). The VIPER physics package is an earlier design with relaxed performance goals that results in a larger temperature coefficient than the other two clocks. Nonetheless, this system can average over the diurnal temperature fluctuation and maintain an instability of 2.5 × 10−14 after 1 day of averaging. VIPER showed a drift rate similar to PICKLES and EPIC during the underway. Importantly, the VIPER physics package does not include magnetic shields yet still provides excellent frequency stability despite motion through Earth’s magnetic field.

Summary data for PICKLES, the highest-performing clock at NIST and at sea, are shown in Fig. 1c,d. Single-clock performance at sea comprises the decorrelated instability for τ less than 200 s (Fig. 3d: blue trace) and the PICKLES–EPIC data for longer periods (Fig. 3d: black trace). The PICKLES–EPIC data are normalized by 1/\(\surd 2\) as an upper bound for PICKLES, assuming equal contributions. Notably, the performance of PICKLES is largely unchanged at sea.

All three clocks were colocated for the at-sea testing; therefore, there is potential for correlated environmental sensitivities due to ship dynamics, motion in Earth’s magnetic field and temperature and humidity variations inside the Conex. Standard reference clocks (such as a caesium beam clock or GPS-disciplined rubidium) were not available for comparison. However, simultaneous evaluation of three clocks raises the level of common mode rejection required to mask fluctuations common to the three systems, particularly given VIPER’s differing spectrometer and laser system designs. Pairing the at-sea test data of three clocks with environmental testing on land provides confidence that potential correlations are below the measured instability (Supplementary Information).

Iodine has proven to be a capable platform for the development of practical optical timekeeping systems. The unique combination of SWaP, phase noise, frequency instability, low environmental sensitivity and operability on moving platforms distinguishes the approach from both commercial microwave clocks and higher-performing laboratory optical clocks. It compares favourably to active hydrogen masers in terms of long-term holdover while outperforming maser phase noise and instability at short timescales. To deliver peak performance, masers typically operate in large (approximately 1,000 l) environmental chambers that carefully regulate the temperature and humidity, limiting their use to the laboratory. Conversely, no special measures were taken to control the operating environment of the iodine clock at both NIST and throughout the RIMPAC underway. Similar to caesium beam clocks, the 3 U rackmount form factor lends itself to use outside the laboratory.

To our knowledge, these clocks are the highest-performing sea-based clocks until now. The integration, packaging and environmental robustness required to achieve such operation is a significant technological step towards widespread adoption of optical timekeeping. Since these field demonstrations, further advancement in the performance and SWaP of the rackmount clocks has been accomplished in our next-generation system, including decreasing short-term instability to 2 × 10−14/√τ, lowering the overall system SWaP to 30 l, 20 kg and 70 W and eliminating the external power supply.

[ad_2]

Source Article Link

Categories
Life Style

Integrated optical frequency division for microwave and mmWave generation

[ad_1]

Microwave and mmWave with high spectral purity are critical for a wide range of applications1,2,3, including metrology, navigation and spectroscopy. Owing to the superior fractional frequency stability of reference-cavity stabilized lasers when compared to electrical oscillators14, the most stable microwave sources are now achieved in optical systems by using optical frequency division4,5,6,7 (OFD). Essential to the division process is an optical frequency comb4, which coherently transfers the fractional stability of stable references at optical frequencies to the comb repetition rate at radio frequency. In the frequency division, the phase noise of the output signal is reduced by the square of the division ratio relative to that of the input signal. A phase noise reduction factor as large as 86 dB has been reported4. However, so far, the most stable microwaves derived from OFD rely on bulk or fibre-based optical references4,5,6,7, limiting the progress of applications that demand exceedingly low microwave phase noise.

Integrated photonic microwave oscillators have been studied intensively for their potential of miniaturization and mass-volume fabrication. A variety of photonic approaches have been shown to generate stable microwave and/or mmWave signals, such as direct heterodyne detection of a pair of lasers15, microcavity-based stimulated Brillouin lasers16,17 and soliton microresonator-based frequency combs18,19,20,21,22,23 (microcombs). For solid-state photonic oscillators, the fractional stability is ultimately limited by thermorefractive noise (TRN), which decreases with the increase of cavity mode volume24. Large-mode-volume integrated cavities with metre-scale length and a greater than 100 million quality (Q)-factor have been shown recently8,25 to reduce laser linewidth to Hz-level while maintaining chip footprint at centimetre-scale9,26,27. However, increasing cavity mode volume reduces the effective intracavity nonlinearity strength and increases the turn-on power for Brillouin and Kerr parametric oscillation. This trade-off poses a difficult challenge for an integrated cavity to simultaneously achieve high stability and nonlinear oscillation for microwave generation. For oscillators integrated with photonic circuits, the best phase noise reported at 10 kHz offset frequency is demonstrated in the SiN photonic platform, reaching −109 dBc Hz−1 when the carrier frequency is scaled to 10 GHz (refs. 21,26). This is many orders of magnitude higher than that of the bulk OFD oscillators. An integrated photonic version of OFD can fundamentally resolve this trade-off, as it allows the use of two distinct integrated resonators in OFD for different purposes: a large-mode-volume resonator to provide exceptional fractional stability and a microresonator for the generation of soliton microcombs. Together, they can provide major improvements to the stability of integrated oscillators.

Here, we notably advance the state of the art in photonic microwave and mmWave oscillators by demonstrating integrated chip-scale OFD. Our demonstration is based on complementary metal-oxide-semiconductor-compatible SiN integrated photonic platform28 and reaches record-low phase noise for integrated photonic-based mmWave oscillator systems. The oscillator derives its stability from a pair of commercial semiconductor lasers that are frequency stabilized to a planar-waveguide-based reference cavity9 (Fig. 1). The frequency difference of the two reference lasers is then divided down to mmWave with a two-point locking method29 using an integrated soliton microcomb10,11,12. Whereas stabilizing soliton microcombs to long-fibre-based optical references has been shown very recently30,31, its combination with integrated optical references has not been reported. The small dimension of microcavities allows soliton repetition rates to reach mmWave and THz frequencies12,30,32, which have emerging applications in 5G/6G wireless communications33, radio astronomy34 and radar2. Low-noise, high-power mmWaves are generated by photomixing the OFD soliton microcombs on a high-speed flip-chip bonded charge-compensated modified uni-travelling carrier photodiode (CC-MUTC PD)12,35. To address the challenge of phase noise characterization for high-frequency signals, a new mmWave to microwave frequency division (mmFD) method is developed to measure mmWave phase noise electrically while outputting a low-noise auxiliary microwave signal. The generated 100 GHz signal reaches a phase noise of −114 dBc Hz−1 at 10 kHz offset frequency (equivalent to −134 dBc Hz−1 for 10 GHz carrier frequency), which is more than two orders of magnitude better than previous SiN-based photonic microwave and mmWave oscillators21,26. The ultra-low phase noise can be maintained while pushing the mmWave output power to 9 dBm (8 mW), which is only 1 dB below the record for photonic oscillators at 100 GHz (ref. 36). Pictures of chip-based reference cavity, soliton-generating microresonators and CC-MUTC PD are shown in Fig. 1b.

Fig. 1: Conceptual illustration of integrated OFD.
figure 1

a, Simplified schematic. A pair of lasers that are stabilized to an integrated coil reference cavity serve as the optical references and provide phase stability for the mmWave and microwave oscillator. The relative frequency difference of the two reference lasers is then divided down to the repetition rate of a soliton microcomb by feedback control of the frequency of the laser that pumps the soliton. A high-power, low-noise mmWave is generated by photodetecting the OFD soliton microcomb on a CC-MUTC PD. The mmWave can be further divided down to microwave through a mmWave to microwave frequency division with a division ratio of M. PLL, phase lock loop. b, Photograph of critical elements in the integrated OFD. From left to right are: a SiN 4 m long coil waveguide cavity as an optical reference, a SiN chip with tens of waveguide-coupled ring microresonators to generate soliton microcombs, a flip-chip bonded CC-MUTC PD for mmWave generation and a US 1-cent coin for size comparison. Microscopic pictures of a SiN ring resonator and a CC-MUTC PD are shown on the right. Scale bars, 100 μm (top and bottom left), 50 μm (bottom right).

The integrated optical reference in our demonstration is a thin-film SiN 4-metre-long coil cavity9. The cavity has a cross-section of 6 μm width × 80 nm height, a free-spectral-range (FSR) of roughly 50 MHz, an intrinsic quality factor of 41 × 106 (41 × 106) and a loaded quality factor of 34 × 106 (31 × 106) at 1,550 nm (1,600 nm). The coil cavity provides exceptional stability for reference lasers because of its large-mode volume and high-quality factor9. Here, two widely tuneable lasers (NewFocus Velocity TLB-6700, referred to as laser A and B) are frequency stabilized to the coil cavity through Pound–Drever–Hall locking technique with a servo bandwidth of 90 kHz. Their wavelengths can be tuned between 1,550 nm (fA = 193.4 THz) and 1,600 nm (fB = 187.4 THz), providing up to 6 THz frequency separation for OFD. The setup schematic is shown in Fig. 2.

Fig. 2: Experimental setup.
figure 2

A pair of reference lasers is created by stabilizing frequencies of lasers A and B to a SiN coil waveguide reference cavity, which is temperature controlled by a thermoelectric cooler (TEC). Soliton microcomb is generated in an integrated SiN microresonator. The pump laser is the first modulation sideband of a modulated continuous wave laser, and the sideband frequency can be rapidly tuned by a VCO. To implement two-point locking for OFD, the 0th comb line (pump laser) is photomixed with reference laser A, while the –Nth comb line is photomixed with reference laser B. The two photocurrents are then subtracted on an electrical mixer to yield the phase difference between the reference lasers and N times the soliton repetition rate, which is then used to servo control the soliton repetition rate by controlling the frequency of the pump laser. The phase noise of the reference lasers and the soliton repetition rate can be measured in the optical domain by using dual-tone delayed self-heterodyne interferometry. Low-noise, high-power mmWaves are generated by detecting soliton microcombs on a CC-MUTC PD. To characterize the mmWave phase noise, a mmWave to  microwave frequency division is implemented to stabilize a 20 GHz VCO to the 100 GHz mmWave and the phase noise of the VCO can be directly measured by a phase noise analyser (PNA). Erbium-doped fibre amplifiers (EDFAs), polarization controllers (PCs), phase modulators (PMs), single-sideband modulator (SSB-SC), band pass filters (BPFs), fibre-Bragg grating (FBG) filters, line-by-line waveshaper (WS), acoustic-optics modulator (AOM), electrical amplifiers (Amps) and a source meter (SM) are also used in the experiment.

The soliton microcomb is generated in an integrated, bus-waveguide-coupled Si3N4 micro-ring resonator10,12 with a cross-section of 1.55 μm width × 0.8 μm height. The ring resonator has a radius of 228 μm, an FSR of 100 GHz and an intrinsic (loaded) quality factor of 4.3 × 106 (3.0 × 106). The pump laser of the ring resonator is derived from the first modulation sideband of an ultra-low-noise semiconductor extended distributed Bragg reflector laser from Morton Photonics37, and the sideband frequency can be rapidly tuned by a voltage-controlled oscillator (VCO). This allows single soliton generation by implementing rapid frequency sweeping of the pump laser38, as well as fast servo control of the soliton repetition rate by tuning the VCO30. The optical spectrum of the soliton microcombs is shown in Fig. 3a, which has a 3 dB bandwidth of 4.6 THz. The spectra of reference lasers are also plotted in the same figure.

Fig. 3: OFD characterization.
figure 3

a, Optical spectra of soliton microcombs (blue) and reference (Ref.) lasers corresponding to different division ratios. b, Phase noise of the frequency difference between the two reference lasers stabilized to coil cavity (orange) and the two lasers at free running (blue). The black dashed line shows the thermal refractive noise (TRN) limit of the reference cavity. c, Phase noise of reference lasers (orange), the repetition rate of free-running soliton microcombs (light blue), soliton repetition rate after OFD with a division ratio of 60 (blue) and the projected repetition rate with 60 division ratio (red). d, Soliton repetition rate phase noise at 1 and 10 kHz offset frequencies versus OFD division ratio. The projections of OFD are shown with coloured dashed lines.

The OFD is implemented with the two-point locking method29,30. The two reference lasers are photomixed with the soliton microcomb on two separate photodiodes to create beat notes between the reference lasers and their nearest comb lines. The beat note frequencies are Δ1 = fA − (fp + n × fr) and Δ2 = fB − (fp + m × fr), where fr is the repetition rate of the soliton, fp is pump laser frequency and n, m are the comb line numbers relative to the pump line number. These two beat notes are then subtracted on an electrical mixer to yield the frequency and phase difference between the optical references and N times of the repetition rate: Δ = Δ1 − Δ2 = (fA − fB) − (N × fr), where N = n − m is the division ratio. Frequency Δ is then divided by five electronically and phase locked to a low-frequency local oscillator (LO, fLO1) by feedback control of the VCO frequency. The tuning of VCO frequency directly tunes the pump laser frequency, which then tunes the soliton repetition rate through Raman self-frequency shift and dispersive wave recoil effects20. Within the servo bandwidth, the frequency and phase of the optical references are thus divided down to the soliton repetition rate, as fr = (fA − fB − 5fLO1)/N. As the local oscillator frequency is in the 10 s MHz range and its phase noise is negligible compared to the optical references, the phase noise of the soliton repetition rate (Sr) within the servo locking bandwidth is determined by that of the optical references (So): Sr = So/N2.

To test the OFD, the phase noise of the OFD soliton repetition rate is measured for division ratios of N = 2, 3, 6, 10, 20, 30 and 60. In the measurement, one reference laser is kept at 1,550.1 nm, while the other reference laser is tuned to a wavelength that is N times of the microresonator FSR away from the first reference laser (Fig. 3a). The phase noise of the reference lasers and soliton microcombs are measured in the optical domain by using dual-tone delayed self-heterodyne interferometry39. In this method, two lasers at different frequencies can be sent into an unbalanced Mach–Zehnder interferometer with an acoustic-optics modulator in one arm (Fig. 2). Then the two lasers are separated by a fibre-Bragg grating filter and detected on two different photodiodes. The instantaneous frequency and phase fluctuations of these two lasers can be extracted from the photodetector signals by using Hilbert transform. Using this method, the phase noise of the phase difference between the two stabilized reference lasers is measured and shown in Fig. 3b. In this work, the phase noise of the reference lasers does not reach the thermal refractive noise limit of the reference cavity9 and is likely to be limited by environmental acoustic and mechanical noises. For soliton repetition rate phase noise measurement, a pair of comb lines with comb numbers l and k are selected by a programmable line-by-line waveshaper and sent into the interferometry. The phase noise of their phase differences is measured, and its division by (l − k)2 yields the soliton repetition rate phase noise39.

The phase noise measurement results are shown in Fig. 3c,d. The best phase noise for soliton repetition rate is achieved with a division ratio of 60 and is presented in Fig. 3c. For comparison, the phase noises of reference lasers and the repetition rate of free-running soliton without OFD are also shown in the figure. Below 100 kHz offset frequency, the phase noise of the OFD soliton is roughly 602, which is 36 dB below that of the reference lasers and matches very well with the projected phase noise for OFD (noise of reference lasers – 36 dB). From roughly 148 kHz (OFD servo bandwidth) to 600 kHz offset frequency, the phase noise of the OFD soliton is dominated by the servo pump of the OFD locking loop. Above 600 kHz offset frequency, the phase noise follows that of the free-running soliton, which is likely to be affected by the noise of the pump laser20. Phase noises at 1 and 10 kHz offset frequencies are extracted for all division ratios and are plotted in Fig. 3d. The phase noises follow the 1/N2 rule, validating the OFD.

The measured phase noise for the OFD soliton repetition rate is low for a microwave or mmWave oscillator. For comparison, phase noises of Keysight E8257D PSG signal generator (standard model) at 1 and 10 kHz are given in Fig. 3d after scaling the carrier frequency to 100 GHz. At 10 kHz offset frequency, our integrated OFD oscillator achieves a phase noise of −115 dBc Hz−1, which is 20 dB better than a standard PSG signal generator. When comparing to integrated microcomb oscillators that are stabilized to long optical fibres30, our integrated oscillator matches the phase noise at 10 kHz offset frequency and provides better phase noise below 5 kHz offset frequency (carrier frequency scaled to 100 GHz). We speculate this is because our photonic chip is rigid and small when compared to fibre references and thus is less affected by environmental noises such as vibration and shock. This showcases the capability and potential of integrated photonic oscillators. When comparing to integrated photonic microwave and mmWave oscillators, our oscillator shows exceptional performance: at 10 kHz offset frequency, its phase noise is more than two orders of magnitude better than other demonstrations, including the free-running SiN soliton microcomb oscillators21,26 and the very recent single-laser OFD40. A notable exception is the recent work of Kudelin et al.41, in which 6 dB better phase noise was achieved by stabilizing a 20 GHz soliton microcomb oscillator to a microfabricated Fabry–Pérot reference cavity.

The OFD soliton microcomb is then sent to a high-power, high-speed flip-chip bonded CC-MUTC PD for mmWave generation. Similar to a uni-travelling carrier PD42, the carrier transport in the CC-MUTC PD depends primarily on fast electrons that provide high speed and reduce saturation effects due to space-charge screening. Power handling is further enhanced by flip-chip bonding the PD to a gold-plated coplanar waveguide on an aluminium nitride submount for heat sinking43. The PD used in this work is an 8-μm-diameter CC-MUTC PD with 0.23 A/W responsivity at 1,550 nm wavelength and a 3 dB bandwidth of 86 GHz. Details of the CC-MUTC PD are described elsewhere44. Whereas the power characterization of the generated mmWave is straightforward, phase noise measurement at 100 GHz is not trivial as the frequency exceeds the bandwidth of most phase noise analysers. One approach is to build two identical yet independent oscillators and down-mix the frequency for phase noise measurement. However, this is not feasible for us due to the limitation of laboratory resources. Instead, a new mmWave to microwave frequency division method is developed to coherently divide down the 100 GHz mmWave to 20 GHz microwave, which can then be directly measured on a phase noise analyser (Fig. 4a).

Fig. 4: Electrical domain characterization of mmWaves generated from integrated OFD.
figure 4

a, Simplified schematic of frequency division. The 100 GHz mmWave generated by integrated OFD is further divided down to 20 GHz for phase noise characterization. b, Typical electrical spectra of the VCO after mmWave to microwave frequency division. The VCO is phase stabilized to the mmWave generated with the OFD soliton (red) or free-running soliton (black). To compare the two spectra, the peaks of the two traces are aligned in the figure. RBW, resolution bandwidth. c, Phase noise measurement in the electrical domain. Phase noise of the VCO after mmFD is directly measured by the phase noise analyser (dashed green). Scaling this trace to a carrier frequency of 100 GHz yields the phase noise upper bound of the 100 GHz mmWave (red). For comparison, phase noises of reference lasers (orange) and the OFD soliton repetition rate (blue) measured in the optical domain are shown. d, Measured mmWave power versus PD photocurrent at −2 V bias. A maximum mmWave power of 9 dBm is recorded. e, Measured mmWave phase noise at 1 and 10 kHz offset frequencies versus PD photocurrent.

In this mmFD, the generated 100 GHz mmWave and a 19.7 GHz VCO signal are sent to a harmonic radio-frequency (RF) mixer (Pacific mmWave, model number WM/MD4A), which creates higher harmonics of the VCO frequency to mix with the mmWave. The mixer outputs the frequency difference between the mmWave and the fifth harmonics of the VCO frequency: Δf = fr − 5fVCO2 and Δf is set to be around 1.16 GHz. Δf is then phase locked to a stable local oscillator (fLO2) by feedback control of the VCO frequency. This stabilizes the frequency and phase of the VCO to that of the mmWave within the servo locking bandwidth, as fVCO2 = (fr − fLO2)/5. The electrical spectrum and phase noise of the VCO are then measured directly on the phase noise analyser and are presented in Fig. 4b,c. The bandwidth of the mmFD servo loop is 150 kHz. The phase noise of the 19.7 GHz VCO can be scaled back to 100 GHz to represent the upper bound of the mmWave phase noise. For comparison, the phase noise of reference lasers and the OFD soliton repetition rate measured in the optical domain with dual-tone delayed self-heterodyne interferometry method are also plotted. Between 100 Hz to 100 kHz offset frequency, the phase noise of soliton repetition rate and the generated mmWave match very well with each other. This validates the mmFD method and indicates that the phase stability of the soliton repetition rate is well transferred to the mmWave. Below 100 Hz offset frequency, measurements in the optical domain suffer from phase drift in the 200 m optical fibre in the interferometry and thus yield phase noise higher than that measured with the electrical method.

Finally, the mmWave phase noise and power are measured versus the MUTC PD photocurrent from 1 to 18.3 mA at −2 V bias by varying the illuminating optical power on the PD. Although the mmWave power increases with the photocurrent (Fig. 4d), the phase noise of the mmWave remains almost the same for all different photocurrents (Fig. 4e). This suggests that low phase noise and high power are simultaneously achieved. The achieved power of 9 dBm is one of the highest powers ever reported at 100 GHz frequency for photonic oscillators36.

[ad_2]

Source Article Link

Categories
News

Optical PCI Express 6.0 optical link 64 GT/s/lane

Optical PCI Express 6

Nubis Communications, Inc. and Alphawave Semi have joined forces to unveil an optical PCI Express 6.0 technology that is capable of transferring data at a remarkable rate of 64 gigatransfers per second for each lane. This breakthrough is not just a step forward; it’s a leap that promises to reshape how data centers operate, especially in areas like artificial intelligence and machine learning.

The collaboration between these two companies has resulted in a solution that is not only scalable but also energy-efficient. It merges the strengths of Nubis’ XT1600 optical engine with Alphawave’s cutting-edge PCIe subsystem. This includes the PiCORE Controller IP and the PipeCORE PHY, which are essential for the new PCIe over Optics technology. This technology is expected to surpass the performance of traditional copper cable connections, which have been the standard until now.

Optical PCI Express 6.0

One of the standout features of optical transmission is its ability to maintain high-speed data transfers over much longer distances than copper cables can manage. This is particularly important for the growth of server clusters used in AI and ML, which require fast and reliable data communication. The Nubis XT1600 optical engine is a key player in this field, as it can manage 16 lanes of PCIe Gen 6.0 traffic without the need for retimers. This simplifies the design of systems and enhances the integrity of the signals being transmitted.

But the implications of PCIe over Optics go even further. It opens the door to new data center designs, such as disaggregated network architectures. These innovative layouts separate computing, storage, and networking functions, placing them in different locations. This could lead to more flexible and efficient data centers, changing the way we think about and manage these critical infrastructures.

“AI applications are reshaping data center networks, with hyperscalers deploying increasingly large clusters of disaggregated servers distributed over longer distances. This shift has generated heightened interest in PCIe over Optics among several of our customers,” said Tony Chan Carusone, CTO at Alphawave Semi. “Through our collaboration with Nubis, we’re pleased to demonstrate how we’re leveraging Alphawave Semi’s leadership in connectivity IP and silicon to enable PCIe optical connectivity solutions that accelerate high-performance AI computing and data infrastructure.”

The upcoming DesignCon event is set to be the stage where this exciting technology will be showcased. Attendees will witness firsthand the Nubis XT1600 optical engine and Alphawave’s PCIe subsystem in action. This demonstration is a testament to the ongoing innovation and the relentless pursuit of enhanced performance in the realm of data center technology.

For those in the industry who are keen to explore the potential of this technology, Nubis Communications is making the Nubis XT1600 optical engine available for sampling. This allows professionals to conduct hands-on evaluations and see for themselves how optical PCI Express 6.0 technology can benefit their systems and applications.

The partnership between Nubis Communications and Alphawave Semi is a significant milestone in the evolution of data center interconnect technology. The introduction of optical PCI Express 6.0 technology at DesignCon is a clear indicator of the bright future that lies ahead for high-speed data transfer, particularly in the demanding fields of AI and ML. As the industry continues to grow and evolve, this innovation is poised to play a pivotal role in shaping the data centers of tomorrow.

Filed Under: Technology News, Top News





Latest timeswonderful Deals

Disclosure: Some of our articles include affiliate links. If you buy something through one of these links, timeswonderful may earn an affiliate commission. Learn about our Disclosure Policy.

Categories
News

4K Optical projector with touchscreen controls $179

4K Optical projector with touchscreen controls

If you are searching for a small compact 4K projector that can be used both outdoors and indoors to transforming your living room wall into a vibrant cinema screen or an interactive presentation space. The WEJOY V1 Pro projector makes this possible, offering a blend of high-definition visuals and user-friendly technology that caters to both your professional and entertainment needs. This sealed optical projector is not just another device; it’s a portal to a world of crisp, clear 4K resolution that brings your content to life in ways you’ve never seen before.

At the heart of the WEJOY V1 Pro‘s appeal is its immersive 4K projection capability. The images it produces are so sharp and clear that you’ll feel as though you’re part of the scene. Whether you’re watching a blockbuster movie or delivering a business presentation, the projector’s interactive touch screen projection system turns any surface into a dynamic workspace or entertainment center. You won’t have to worry about uneven lighting either, as the projector boasts an 85% uniformity rating, ensuring that every corner of your display is consistently bright.

Early bird pledges are now available for the unique projector from roughly $179 or £141 (depending on current exchange rates). One of the most impressive aspects of the WEJOY V1 Pro is its quiet operation. At less than 30 decibels, it’s as quiet as a whisper, allowing you to immerse yourself in your viewing experience without any distracting noise.

This silence is thanks in part to the projector’s efficient heat dissipation system, which not only keeps things quiet but also extends the life of the bulb. But the WEJOY V1 Pro isn’t just about quiet enjoyment; it’s also smart. Features like autofocus, obstacle avoidance, and automatic alignment mean that your projections are always sharp and correctly positioned, regardless of where you are.

4K Projector for indoor and outdoor entertainment

WEJOY V1 Pro 4K projector features

The WEJOY V1 Pro is designed with flexibility in mind. Whether you’re in a cramped office or a spacious backyard, the projector’s Auto Keystone Correction and 4-point keystone correction allow you to adjust the image to fit your space perfectly. And when it’s time to move, the projector’s compact design, complete with a built-in battery and TYPE-C port, makes it a breeze to carry from one venue to the next.

Connectivity is key in our tech-driven world, and the WEJOY V1 Pro doesn’t disappoint. It’s equipped to handle a variety of inputs, ensuring that you can link up almost any device with minimal fuss. HDMI ports accommodate laptops, USB ports are ready for media playback, and wireless options are available for screen mirroring with Windows laptops through Wi-Fi and Eshare software. The projector is also compatible with streaming devices, gaming consoles, and external speakers, making it a versatile hub for all your multimedia needs.

Assuming that the WEJOY V1 Pro funding campaign successfully raises its required pledge goal and production progresses smoothly, worldwide shipping is expected to take place sometime around April 2024. To learn more about the WEJOY V1 Pro 4K projector project inspect the promotional video below.

The WEJOY V1 Pro projector is a sophisticated piece of technology that offers a seamless blend of high-definition imagery and interactive features. Its quiet operation, intelligent adjustments, portability, and extensive connectivity make it an ideal choice for anyone seeking a premium projection experience. Whether you’re a business professional looking to impress clients with a dynamic presentation or a movie enthusiast wanting to bring the theater experience home, the WEJOY V1 Pro is equipped to exceed your expectations.

For a complete list of all available special pledges, stretch goals, extra media and technical data sheet for the 4K projector, jump over to the official WEJOY V1 Pro crowd funding campaign page by visiting the link below.

Source : Kickstarter

Disclaimer: Participating in crowdfunding campaigns on sites like Kickstarter and Indiegogo involves inherent risks. While many projects successfully meet their goals, others may fail to deliver due to numerous challenges. Always conduct thorough research and exercise caution when pledging your hard-earned money as you might lose it all if the project fails.

Filed Under: Displays News, Top News





Latest timeswonderful Deals

Disclosure: Some of our articles include affiliate links. If you buy something through one of these links, timeswonderful may earn an affiliate commission. Learn about our Disclosure Policy.