Categories
Life Style

mRNA drug offers hope for treating a devastating childhood disease

[ad_1]

A drug that uses messenger RNA technology has shown early success in addressing the core deficiency behind a rare genetic disorder. The results have ignited hope that the technology — which first gained attention through its breakthrough use in COVID-19 vaccines — could realize its long-awaited promise of generating therapeutic proteins directly in the body.

This clinical advance, reported today in Nature1, provides a boost to current mRNA applications, which remain limited to vaccines.

“This is a first step in the right direction,” says Katalin Karikó, a Nobel prizewinning pioneer of mRNA technologies who is affiliated with the University of Szeged in Hungary and the University of Pennsylvania in Philadelphia.

Yet challenges remain — especially the fleeting nature of mRNA and the side effects it causes, which complicate the path towards widespread adoption.

Metabolic makeover

Designed by Moderna in Cambridge, Massachusetts, the current therapy uses mRNA technology to restore metabolic function in people with propionic acidaemia.

This rare genetic disorder, which affects about one in 100,000 individuals worldwide, arises from mutations in either of two genes that together encode an enzyme necessary for the efficient breakdown of certain protein components. Without this enzyme, cells can’t process some nutrients properly.

That leads to the accumulation of toxic chemicals in the blood and tissues, and damages vital organs, including the heart and the brain. Symptoms, such as vomiting, usually start within the first few days after birth.

People can manage the condition with measures such as special diets. But there are currently no treatments that tackle the underlying cause directly.

Moderna’s drug, known as mRNA-3927, aims to address that gap. It contains two mRNA sequences that each craft parts of the otherwise faulty enzyme. These mRNAs are encased in a tiny fat bubble — called a lipid nanoparticle — similar to the carrier used in the company’s COVID-19 vaccine.

The therapeutic mRNA drug is administered slowly through hours-long infusions every two or three weeks. It is also given in doses hundreds of times greater than those of COVID-19 vaccines. Once the therapy enters the bloodstream, the lipid nanoparticles help to direct the mRNA to cells in the liver, where the functional enzyme is made.

Trade-offs and benefits

Initial results from a small trial of mRNA-3927 indicate that the restoration of enzymatic activity is beneficial. Eight of the 16 participants had experienced life-threatening episodes connected to their impaired metabolism in the year before starting treatment. For those eight, the likelihood of experiencing another such event decreased by an average of 70–80% while taking the therapy.

This outcome, based on a small number of people, did not reach the threshold of statistical significance. Nonetheless, “it’s a very encouraging step”, says Jerry Vockley, a medical geneticist at the University of Pittsburgh Medical Center in Pennsylvania who helped to design the trial but who was not involved in its execution.

According to Kyle Holen, head of therapeutics development at Moderna, the company is now recruiting more trial participants as it advances mRNA-3927 towards the goal of marketing approval.

Moderna is also analysing other outcome measures related to quality-of-life metrics — indicators that, anecdotally at least, seem to be improving for some recipients of the treatment.

Nassrine Fawaz in Livonia, Michigan, has witnessed a transformation in her 4-year-old daughter, who has received mRNA-3927 for the past 2.5 years. After each infusion, “she’s focused, she’s energetic, she’s up and ready for the day — all of those great things”.

Room for improvement

Developers of mRNA therapeutics had long worried that repeated administration might trigger immune responses against the treatment. However, with individuals having now received regular infusions of mRNA for months or even years without issue, this concern has been alleviated.

“That’s pretty big,” says Alex Wesselhoeft, director of RNA therapeutics at Mass General Brigham’s Gene and Cell Therapy Institute in Cambridge, Massachusetts.

But there are trade-offs: most people reported side effects in response to the treatment. These ranged from infections to severe swelling of the pancreas. However, as study investigator Andreas Schulze, a metabolic-disease specialist at the Hospital for Sick Children in Toronto, Canada, points out, many of the reactions are more likely to be “related to the underlying disease” than to the treatment.

Still, with a side-effect profile close to what Wesselhoeft describes as the “upper limit of tolerability”, and only modest clinical gains, he and others think that further refinements are needed before mRNA technologies can provide a fully corrective and long-term solution to genetic diseases.

“I’m just doubtful this is going to be a long-term therapy,” says Romesh Subramanian, a biotechnology consultant in Framingham, Massachusetts, who, in a previous job, worked in collaboration with Moderna scientists to develop mRNA therapies for rare diseases. “I think it needs to be much less frequent dosing with better [nanoparticles] or more potent mRNA.”

Meanwhile, many families affected by propionic acidaemia are maintaining a wait-and-see attitude. “The verdict is still out,” says Jill Chertow, founder and president of the Propionic Acidemia Foundation, a non-profit organization based in Deerfield, Illinois.

“We can only be hopeful since, right now, that’s all that we have.”

[ad_2]

Source Article Link

Categories
Politics

Optimizing boosters: How COVID mRNA vaccines reshape immune memory after each dose

[ad_1]

mRNA vaccines developed against the spike glycoprotein of severe acute respiratory syndrome type 2 coronavirus (SARS-CoV-2), displayed remarkable efficiency in combating coronavirus 19 (COVID-19). These vaccines work by triggering both cellular and humoral immune responses against the spike protein of the virus. Cellular immunity may play a more protective role than humoral immunity to variants of concerns (VOC) against SARS-CoV-2, as it targets the conserved regions of spike protein and possibly cross-reacts with other variants.

Since a single spike epitope is recognized by multiple T-cell clones, the mRNA vaccination-induced T-cell response may consist of multiple spike-reactive clones. Thus, it is important to understand the mechanism of mRNA vaccination-induced cellular immune response. However, to address this clonal-resolution analysis on T-cell responses to mRNA vaccination has not been performed yet.

To bridge this gap, a team of researchers, led by Associate Professor Satoshi Ueha, including Professor Kouji Matsushima from the Tokyo University of Science (TUS), Japan, Mr. Hiroyasu Aoki from the University of Tokyo, and Professor Toshihiro Ito from Nara Medical University, aimed to develop a kinetic profile of spike-reactive T-cell clones during repetitive mRNA vaccination. For this, they performed a longitudinal TCR sequencing on peripheral T cells of 38 participants who had received the Pfizer vaccine from before the vaccine to after the third vaccination and then analyzed the single-cell gene expression and epitope specificity of the clonotypes.

Their findings, published in Cell Reports on March 7, 2024, revealed that while the primary T-cell response of naïve T cells generally peaked 10-18 days after the first shot, expansion of “early responders” was detected on day 7 after the first shot, suggesting that these early responders contain memory T cells against common cold coronaviruses. They also found a “main responder” that expanded after the second shot and did not expand early after the first shot and a “third responder” that appeared and expanded only after the third shot.

By longitudinally tracking the total frequency of each response pattern, it was observed that, after the second shot, a shift among the clonotypes occurred, wherein the major population changed from early responders to main responders, suggestive of a shift in clonal dominance. A similar shift of responding clones was also observed in CD4+ T cells.

Expanding upon the research process, Prof. Ueha says, “We next analyzed the phenotype of main responders after the second and the third vaccination. The results showed that the main responders after the second and third shots mostly consist of effector-memory T cells (TEM), with more terminally differentiated effector memory-like phenotype after the third shot.”

The researchers then examined the repertoire changes of main responders, revealing that the expansion of main responders, which occurred after the second shot, diminished following the third shot, and the clonal diversity decreased and was partially replaced by the third responders. This may potentially mean that the third vaccination selected better-responding clones.

Due to the vaccination-induced shift in immunodominance of spike epitopes, the study supports the inter-epitope shift model. In addition, there were intra-epitope shifts of vaccine-responding clonotypes within spike epitopes.

Prof. Ueha explains the significance of these results, “Our analysis suggests that T cells can “re-write” themselves and reshape their memory populations after successive vaccinations. This re-writability not only maintains the number of memory T cells but also maintains diversity that can respond to different variants of pathogens. Moreover, by tuning the replacement of memory cells, more effective vaccines can be developed that can also be tailored to an individual’s unique immune response.”

Overall, this study provides important insights into mRNA vaccine-induced T-cell responses, which will be crucial for developing next-generation vaccines for more effective and broad protection against viruses.

[ad_2]

Source Article Link