Categories
Life Style

Estella Bergere Leopold (1927–2024), passionate environmentalist who traced changing ecosystems

[ad_1]

Estella Leopold with her pet squirrel in 1938

Credit: The Aldo Leopold Foundation and University of Wisconsin-Madison Archives

Estella Bergere Leopold was a palaeobotanist whose studies of fossil pollen and spores helped to reconstruct past environments and link them to the present. Her investigations of the Cenozoic era (from 66 million years ago to the present) provided some of the first insights into the evolution of modern plant communities and the factors that governed their development, including the consequences of long-term climate change, mountain building and volcanism. Few researchers before her had traced the rise of present-day ecosystems through time, and her discoveries helped to connect the relatively well-studied ice-age influences on vegetation with deep-time geological processes.

Leopold, who has died aged 97, was an ardent conservationist who argued that nature should be cherished and protected. She thought that science should be used in defence of the planet; this is evident in her writings, lectures and political activism.

Leopold was born in Madison, Wisconsin, the youngest daughter of conservationist Aldo Leopold and his wife Estella Bergere Leopold. All five Leopold children became esteemed scientists and conservationists in their own right. Her childhood, particularly her time spent at the family cabin, called ‘the Shack’, in central Wisconsin spurred an early interest in ecology. Leopold graduated with a degree in botany from the University of Wisconsin–Madison in 1948 and a master’s degree from the University of California, Berkeley, in 1950. She moved to Yale University in New Haven, Connecticut, to join a new graduate programme in conservation headed by Paul Sears, a pioneer in palynology (pollen analysis), and also to study with mathematical ecologist G. Evelyn Hutchinson and his former student Edward Deevey Jr. Her dissertation focused on the history of New England forests through the analysis of pollen and spores extracted from peat deposits, and palynology became her main research tool.

After graduating from Yale in 1955, Leopold was one of the few women who joined the US Geological Survey in Lakewood, Colorado, as a scientist. By meticulously comparing fossil pollen and spores with modern ones, she reconstructed past floras — innovative and insightful findings at the time. Her early study of the Eniwetok and Bikini atolls in the Pacific Ocean revealed the existence of a tropical rainforest in the south Pacific during the Miocene epoch (23 million to 5 million years ago). She examined Cenozoic plant-fossil sites for evidence of the origins of modern flora. Leopold described the transition from ancient species to newer variants in the Rocky Mountains of western North America, which showed an earlier modernization trend in the middle of the continent than in coastal areas, as a result of greater cooling, seasonality and mountain uplift.

Her research in Colorado on the Florissant fossil beds — well-preserved sediments from a 34-million-year-old lake — spurred her to lead a conservation effort in the area. In 1969, the 2,428-hectare Florissant Fossil Beds National Monument was established. Other successful actions included opposing oil-shale development in western Colorado, protesting dam building in the US Grand Canyon and stopping the shipping of highly radioactive materials through waterways that connected the Pacific Northwest region to the Pacific Ocean. Leopold also served on several conservation boards and was president of the Aldo Leopold Foundation, which she founded with her siblings to promote ethical land stewardship.

From 1976 to 1982, she directed the Quaternary Research Center at the University of Washington in Seattle and maintained an active research programme there, studying the palaeoecology and palaeoflora of the western United States and comparable settings in China. She officially retired in 2000, but remained active in research until her death.

Leopold recognized the power of scientific credentials in environmental activism. Throughout her career, she promoted palaeobotany as a tool for land protection. She argued that the value of a place was partly the result of its ecological history and how environmental events shape it. One of those events is fire. Using ethnographic and palaeoecological studies, Leopold highlighted the importance of Native American burning practices before European settlement for maintaining the health of prairies and woodland; she actively supported deliberate fire management.

In 1969, Estella was named conservationist of the year by the Colorado Wildlife Federation; she received the International Cosmos Prize for contributions to conservation in 2010. But those awards, and numerous others, scarcely do justice to the personal influence that she had on students. I met Estella at the US Geological Survey as an undergraduate student and was overjoyed when she accepted me for graduate studies at the University of Washington. Her unbridled enthusiasm for science and environmental protection was inspiring. Estella had what we students called a ‘1,000-volt look’ whenever an idea piqued her interest — to experience this was electrifying.

Estella will be remembered for her important contributions to ecology and for a life-long crusade to protect the land. More than most individuals, her scientific interests were inextricably linked to her environmental activism. She was keenly aware of her family heritage and, like her father, advocated simple outdoor living as a way to learn and appreciate nature. As a woman in a male-dominated field, she maintained a strong sense of humour and fearlessness throughout her career; yet, she also had immense grace and generosity. Estella leaves behind colleagues, former students and environmental activists who treasure her influence and their time with her.

Competing Interests

The author declares no competing interests.

[ad_2]

Source Article Link

Categories
News

Monitoring freshwater ecosystems with affordable new biosensor

Monitoring freshwater ecosystems with affordable new biosensor

The health of freshwater ecosystems is of paramount importance in maintaining the balance of our environment. However, their preservation is threatened by the release of biodegradable waste from plant and animal sources. Despite the gravity of this issue, the current methods for assessing water quality are often impractical due to their complexity and high costs. In a remarkable breakthrough, researchers from Ritsumeikan University in Japan have developed an affordable and self-sustaining biosensor that can efficiently monitor water quality in freshwater lakes and rivers.

This innovative biosensor is designed to detect organic effluents, or biodegradable waste materials from plants and animals, which are a significant environmental concern. The team behind this invention used inexpensive carbon-based materials to construct the biosensor, making it not only cost-effective but also accessible for widespread use.

Affordable and self-sustaining biosensor

The biosensor operates based on a microbial fuel cell (MFC), a technology that generates electricity through the biological metabolism of electrogenic bacteria. This fascinating process involves the bacteria consuming the organic waste and converting the stored chemical energy into electricity. The amount of electricity produced is proportional to the concentration of organic waste consumed by the bacteria, making it a reliable indicator of the level of organic waste present in the water.

Inside the anode of the MFC, the researchers placed soil containing electrogenic bacteria. As these bacteria decomposed the organic matter in the water, they converted the stored chemical energy into electricity. This electrical output served as a measure of the organic waste present in the water, providing a direct and efficient method of monitoring water quality.

Monitoring freshwater pollution

To enhance the practicality of this biosensor for monitoring freshwater ecosystems, the team added a light-emitting diode (LED) that visually indicated the level of organic contamination in the water samples. The LED began flashing when the chemical oxygen demand (COD), a parameter used to measure the level of organic contaminants in water, exceeded a threshold value of 60 mg/L. This visual cue provides a simple yet effective way for anyone to understand the level of contamination in the water, without the need for complex analysis.

Notably, the biosensor requires no external power supply, making it a self-sustaining solution for monitoring water quality. This feature makes it particularly useful in early detection systems that monitor influxes of organic wastewater in freshwater bodies, providing a timely warning to prevent potential environmental disasters.

Other articles you may find of interest on the subject of electronic sensors :

Monitoring freshwater ecosystems

The details of this study were published in the Biochemical Engineering Journal in November 2023, marking a significant milestone in the field of environmental conservation. This affordable new biosensor offers a practical and cost-effective solution to monitor freshwater ecosystems, paving the way for improved water quality management worldwide.

Monitoring freshwater ecosystems with affordable new biosensor represents a significant leap forward in our ability to protect and preserve our precious water resources. This development highlights the importance of innovative and accessible technology in addressing environmental challenges and ensures that we can continue to enjoy the benefits of healthy freshwater ecosystems for generations to come. For more information read the official paper explaining the biosensor in more detail.

Ritsumeikan University, Japan

Ritsumeikan University is one of the most prestigious private universities in Japan. Its main campus is in Kyoto, where inspiring settings await researchers. With an unwavering objective to generate social symbiotic values and emergent talents, it aims to emerge as a next-generation research university.

It will enhance researcher potential by providing support best suited to the needs of young and leading researchers, according to their career stage. Ritsumeikan University also endeavors to build a global research network as a “knowledge node” and disseminate achievements internationally, thereby contributing to the resolution of social/humanistic issues through interdisciplinary research and social implementation.

Filed Under: Technology News, Top News





Latest timeswonderful Deals

Disclosure: Some of our articles include affiliate links. If you buy something through one of these links, timeswonderful may earn an affiliate commission. Learn about our Disclosure Policy.